A Characterization of Noncompact Koiso-type Solitons

نویسنده

  • BO YANG
چکیده

We construct complete gradient Kähler–Ricci solitons of various types on the total spaces of certain holomorphic line bundles over compact Kähler–Einstein manifolds with positive scalar curvature. Those are noncompact analogues of the compact examples found by Koiso [On rotationally symmetric Hamilton’s equations for Kähler–Einstein metrics, in Recent Topics in Differential and Analytic Geometry, Advanced Studies in Pure Mathematics, Vol. 18-I (Academic Press, Boston, MA, 1990), pp. 327–337]. Our examples can be viewed a generalization of previous examples by Cao [Existense of gradient Kähler– Ricci solitons, in Elliptic and Parabolic Methods in Geometry (Minneapolis, MN, 1994), pp. 1–16], Chave and Valent [On a class of compact and non-compact quasi-Einstein metrics and their renormalizability properties, Nuclear Phys. B 478 (1996) 758–778], Pedersen, Tønnesen-Friedman, and Valent [Quasi-Einstein Kähler metrics, Lett. Math. Phys. 50(3) (1999) 229–241], and Feldman, Ilmanen and Knopf [Rotationally symmetric shrinking and expanding gradient Kähler–Ricci solitons, J. Differential Geom. 65 (2003) 169–209]. We also prove a uniformization result on complete steady gradient Kähler–Ricci solitons with non-negative Ricci curvature under additional assumptions.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Generic Properties of Homogeneous Ricci Solitons

We discuss the geometry of homogeneous Ricci solitons. After showing the nonexistence of compact homogeneous and noncompact steady homogeneous solitons, we concentrate on the study of left invariant Ricci solitons. We show that, in the unimodular case, the Ricci soliton equation does not admit solutions in the set of left invariant vector fields. We prove that a left invariant soliton of gradie...

متن کامل

Translating Solitons of Mean Curvature Flow of Noncompact Spacelike

In this paper, we study the existence, uniqueness and asymptotic behavior of rotationally symmetric translating solitons of the mean curvature flow in Minkowski space. We also study the asymptotic behavior and the strict convexity of general solitons of such flows.

متن کامل

On Gradient Ricci Solitons with Symmetry

We study gradient Ricci solitons with maximal symmetry. First we show that there are no non-trivial homogeneous gradient Ricci solitons. Thus the most symmetry one can expect is an isometric cohomogeneity one group action. Many examples of cohomogeneity one gradient solitons have been constructed. However, we apply the main result in [12] to show that there are no noncompact cohomogeneity one s...

متن کامل

On the classification of gradient Ricci solitons

We show that the only shrinking gradient solitons with vanishing Weyl tensor are quotients of the standard ones Sn, S × R, and Rn. This gives a new proof of the Hamilton-Ivey-Perel’man classification of 3dimensional shrinking gradient solitons. We also show that gradient solitons with constant scalar curvature and suitably decaying Weyl tensor when noncompact are quotients of Hn, H × R, Rn, S ×...

متن کامل

On Locally Conformally Flat Gradient Steady Ricci Solitons

In this paper, we prove that a complete noncompact non-flat conformally flat gradient steady Ricci soliton is, up to scaling, the Bryant soliton. 1. The result A complete Riemannian metric gij on a smooth manifold M n is called a gradient steady Ricci soliton if there exists a smooth function F on M such that the Ricci tensor Rij of the metric gij is given by the Hessian of F : Rij = ∇i∇jF. (1....

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012